skip to main content


Search for: All records

Creators/Authors contains: "Dong, Ping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multipath transmission is considered one of the promising solutions to improve wireless resource utilization where there are many kinds of heterogeneous networks around. Most scheduling algorithms rely on real-time network metrics, including delay, packet loss, and arrival rates, and achieve satisfying results in simulation or wired environments. However, the implicit premise of a scheduling algorithm may conflict with the characteristics of real heterogeneous wireless networks, which has been ignored before. This paper analyzes the real network metrics of three Chinese heterogeneous wireless networks under different transmission rates. To make the results more convincing, we conduct experiments in various scenarios, including different locations, different times of the day, different numbers of users, and different motion speeds. Further, we verify the suitability of a typical delay-aware multipath scheduling algorithm, Lowest Round Trip Time, in heterogeneous networks based on the actual data measured above. Finally, we conclude the characteristics of heterogeneous wireless networks, which need to be considered in a well-designed multipath scheduling algorithm. 
    more » « less
  2. Abstract

    The transient self‐assembly of molecules under the direction of a consumable fuel source is fundamental to biological processes such as cellular organization and motility. Such biomolecular assemblies exist in an out‐of‐equilibrium state, requiring continuous consumption of high energy molecules. At the same time, the creation of bioinspired supramolecular hydrogels has traditionally focused on associations occurring at the thermodynamic equilibrium state. Here, hydrogels are prepared from cucurbit[7]uril host–guest supramolecular interactions through transient physical crosslinking driven by the consumption of a reactive chemical fuel. Upon action from this fuel, the affinity and dynamics of CB[7]–guest recognition are altered. In this way, the lifetime of transient hydrogel formation and the dynamic modulus obtained are governed by fuel consumption, rather than being directed by equilibrium complex formation.

     
    more » « less
  3. Abstract

    The transient self‐assembly of molecules under the direction of a consumable fuel source is fundamental to biological processes such as cellular organization and motility. Such biomolecular assemblies exist in an out‐of‐equilibrium state, requiring continuous consumption of high energy molecules. At the same time, the creation of bioinspired supramolecular hydrogels has traditionally focused on associations occurring at the thermodynamic equilibrium state. Here, hydrogels are prepared from cucurbit[7]uril host–guest supramolecular interactions through transient physical crosslinking driven by the consumption of a reactive chemical fuel. Upon action from this fuel, the affinity and dynamics of CB[7]–guest recognition are altered. In this way, the lifetime of transient hydrogel formation and the dynamic modulus obtained are governed by fuel consumption, rather than being directed by equilibrium complex formation.

     
    more » « less
  4. Abstract

    The adoption of existing continuous glucose monitors (CGMs) is limited by user burden. Herein, a design for a glucose biosensor with the potential for subcutaneous implantation, without the need for a transcutaneous probe or affixed transmitter, is presented. The design is based on the combination of an enzyme‐driven phosphorescence lifetime‐based glucose‐sensing assay and a thermoresponsive membrane anticipated to reduce biofouling. The metalloporphyrin, Pd meso‐tetra(sulfophenyl)‐tetrabenzoporphyrin ([PdPh4(SO3Na)4TBP]3, HULK) as well as glucose oxidase (GOx) are successfully incorporated into the UV‐cured double network (DN) membranes by leveraging electrostatic interactions and covalent conjugation, respectively. The oxygen‐sensitive metalloporphyrin is incorporated at different levels within the DN membranes. These HULK‐containing membranes retain the desired thermosensitivity, as well as glucose diffusivity and primary optical properties of the metalloporphyrin. After subsequently modifying the membranes with GOx, glucose‐sensing experiments reveal that membranes prepared with the lowest GOx level exhibit the expected increase in phosphorescent lifetime for glucose concentrations up to 200 mg dL−1. For membranes prepared with relatively higher GOx, oxygen‐limited behavior is considered the source of diminished sensitivity at higher glucose levels. This proof‐of‐concept study demonstrates the promising potential of a biosensor design integrating a specific optical biosensing chemistry into a thermoresponsive hydrogel membrane.

     
    more » « less